Set of numbers

- Natural numbers is denoted as \mathbf{N} and can be written as: $\boldsymbol{N}=\{\mathbf{1}, \mathbf{2}, \mathbf{3} \ldots\}$
- Integers numbers are denoted by the symbol \mathbf{Z} and can be written as: $\boldsymbol{Z}=$ $\{\cdots,-2,-1,0,1,2, \cdots\}$
- Rational numbers are those numbers, which can be expressed as a division between two integers. The set of rational numbers is denoted as \mathbf{Q}.

$$
\boldsymbol{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in Z, q \neq 0\right\}
$$

- Irrational numbers decimal numbers, which are neither exact nor recurring decimals, are characterized by infinite no periodic decimal digits, i.e. that never end nor have a repeating pattern. For example $\pi, \sqrt{2}, \sqrt[3]{5}$.
- Real numbers the set formed by rational numbers and irrational numbers is called the set of real numbers and is denoted as \mathbf{R}.
- Complex number can be represented by an expression of the form $\boldsymbol{a}+\boldsymbol{b i}$, where \boldsymbol{a} and \boldsymbol{b} are real numbers and \boldsymbol{i} is a symbol with the property that $\boldsymbol{i}^{\mathbf{2}}=\mathbf{1}$.

Intervals

Definition: If \mathbf{a} and \mathbf{b} are real numbers, we define the Intervals as follows:

- Finite Intervals

1. Open Intervals $(a, b)=\{x \in R: a<x<b\}$
2. Closed Intervals $[a, b]=\{x \in R: a \leq x \leq b\}$
3. Half open, half closed Intervals $[a, b)=\{x \in R: a \leq x<b\}$ and

$$
(a, b]=\{x \in R: a<x \leq b\}
$$

- Infinite Intervals:

1. $[a, \infty)=\{x \in R: x \geq a\}$
2. $(-\infty, a]=\{x \in R: x \leq a\}$
3. $(-\infty, a)=\{x \in R: x<a\}$
4. $(-\infty, \infty)=\{x \in R: x$ is real number $\}$

Functions, Domain and Range

Definition: A relation $f: X \rightarrow Y$ is called a function if and only if for each element $x \in X$ there exist a unique element $y \in Y$ such that $y=f(x)$

Notes:

1. The set X of all possible input values is called the domain of f and it's denoted by D_{f}.
2. The set Y is called the co-domain of the function.
3. The set of all elements of Y such that $y=f(x)$ is called the Range of the function and represented by R .
4. The variable x in a function $y=f(x)$ is called an independent variable. While, the variable y is called a dependent variable.

Example: Verify the domains and associated ranges of the following functions

1. $y=x^{2}$
2. $y=x+5$
3. $y=\frac{1}{x+2}$
4. $y=\frac{1}{\sqrt{2-x}}+5$
5. $y=\sqrt{4-x}$

Algebraic Combination of Function

If f and g are two functions with domains D_{f} and D_{g} respectively, then:

1. $(f+g)(x)=f(x)+g(x)$ with $D_{f+g}=D_{f} \cap D_{g}$
2. $(f-g)(x)=f(x)-g(x)$ with $D_{f-g}=D_{f} \cap D_{g}$
3. $(f \cdot g)(x)=f(x) \cdot g(x)$ with $D_{f \cdot g}=D_{f} \cap D_{g}$
4. $\left(\frac{f}{g}\right)(x)=\left.\frac{f(x)}{g(x)}\right|_{g(x) \neq 0}$ with,$D_{\frac{f}{g}}=D_{f} \cap D_{g}$ and $g(x) \neq 0$

Composite Function

If the Range of the function $f(x)$ is contained in the Domain of the function $g(x)$, then the composition $f \circ g$ is the function defined by $(f \circ g)(x)=f(g(x))$

The domain of $f \circ g$ consists of the number x in the domain of g for which $g(x)$ lies in the domain of f.

$$
x \xrightarrow{g} g(x) \xrightarrow{f} f(g(x))
$$

The Inverse of the functions

Definition: A function is said to be one - to- one function if and only if there is no two elements of the domain have the same image in the range.
i.e. if $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2} \quad$ or if $x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$

The Horizontal Line Test: A function $y=f(x)$ is one-to-one if and only if its graph intersects each horizontal line at most one point.

Definition: Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by $f^{-1}(b)=a$ if $f(a)=b$. The domain of f^{-1} is R and the range of f^{-1} is D.

How to find the inverse function of a one-to-one function f

1. Write $y=f(x)$.
2. Solve this equation for x in terms of y (if possible).
3. To express f^{-1} as a function of x, interchange x and y, the resulting equation is $y=f^{-1}(x)$
