1

Set of numbers

- Natural numbers is denoted as N and can be written as: $N = \{1, 2, 3 \dots\}$
- Integers numbers are denoted by the symbol Z and can be written as: $Z = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- **Rational numbers** are those numbers, which can be expressed as a division between two integers. The set of rational numbers is denoted as **Q**.

$$Q = \left\{ \frac{p}{q} \middle| p, q \in Z , q \neq 0 \right\}$$

- Irrational numbers decimal numbers, which are neither exact nor recurring decimals, are characterized by infinite no periodic decimal digits, i.e. that never end nor have a repeating pattern. For example $\pi, \sqrt{2}, \sqrt[3]{5}$.
- **Real numbers** the set formed by rational numbers and irrational numbers is called the set of real numbers and is denoted as **R**.
- Complex number can be represented by an expression of the form a + bi, where a and b are real numbers and i is a symbol with the property that $i^2 = 1$.

Intervals

Definition: If **a** and **b** are real numbers, we define the Intervals as follows:

- Finite Intervals
 - 1. Open Intervals $(a, b) = \{x \in R : a < x < b\}$
 - 2. Closed Intervals $[a, b] = \{x \in R : a \le x \le b\}$
 - 3. Half open, half closed Intervals $[a, b) = \{x \in R : a \le x < b\}$ and

$$(a, b] = \{x \in R : a < x \le b\}$$

Infinite Intervals:

- 1. $[a, \infty) = \{x \in R : x \ge a\}$
- 2. $(-\infty, a] = \{x \in R : x \le a\}$
- 3. $(-\infty, a) = \{x \in \mathbb{R} : x < a\}$
- 4. $(-\infty, \infty) = \{x \in \mathbb{R} : x \text{ is real number}\}$

Dr. Ansam Al-Sabti

Department of Mathematics_College of Education for Pure Sciences_Basra University

2

Functions, Domain and Range

Definition: A relation $f: X \to Y$ is called a function if and only if for each element $x \in X$ there exist a unique element $y \in Y$ such that y = f(x)

Notes:

- 1. The set X of all possible input values is called the domain of f and it's denoted by D_f .
- 2. The set Y is called the co-domain of the function.
- 3. The set of all elements of Y such that y = f(x) is called the Range of the function and represented by R.
- 4. The variable x in a function y = f(x) is called an independent variable. While, the variable y is called a dependent variable.

Example: Verify the domains and associated ranges of the following functions

- 1. $y = x^2$
- 2. y = x + 5
- 3. $y = \frac{1}{x+2}$
- 4. $y = \frac{1}{\sqrt{2-x}} + 5$
- 5. $y = \sqrt{4-x}$

Algebraic Combination of Function

If f and g are two functions with domains D_f and D_g respectively, then:

1.
$$(f + g)(x) = f(x) + g(x)$$
 with $D_{f+g} = D_f \cap D_g$
2. $(f - g)(x) = f(x) - g(x)$ with $D_{f-g} = D_f \cap D_g$
3. $(f \cdot g)(x) = f(x) \cdot g(x)$ with $D_{f \cdot g} = D_f \cap D_g$
4. $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}|_{g(x)\neq 0}$ with $D_f = D_f \cap D_g$ and $g(x) \neq 0$

Composite Function

If the Range of the function f(x) is contained in the Domain of the function g(x), then the composition $f \circ g$ is the function defined by $(f \circ g)(x) = f(g(x))$

The domain of $f \circ g$ consists of the number x in the domain of g for which g(x) lies in the domain of f.

The Inverse of the functions

Definition: A function is said to be one - to- one function if and only if there is no two elements of the domain have the same image in the range.

i.e. if $f(x_1) = f(x_2) \implies x_1 = x_2$ or if $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$

<u>The Horizontal Line Test</u>: A function y = f(x) is **one-to-one** if and only if its graph intersects each horizontal line at most one point.

Definition: Suppose that *f* is a one-to-one function on a domain *D* with range *R*. The **inverse function** f^{-1} is defined by $f^{-1}(b) = a$ if f(a) = b. The domain of f^{-1} is *R* and the range of f^{-1} is *D*.

How to find the inverse function of a one-to-one function f

- **1.** Write y = f(x).
- 2. Solve this equation for *x* in terms of *y* (if possible).
- 3. To express f^{-1} as a function of x, interchange x and y, the resulting equation is

 $y = f^{-1}(x)$